
Abstract. The paper by Kohn and Sham (KS) is
important for at least two reasons. First, it is the basis
for practical methods for density functional calculations.
Second, it has endowed chemistry and physics with an
independent particle model with very appealing features.
As expressed in the title of the KS paper, correlation
e�ects are included at the level of one-electron equa-
tions, the practical advantages of which have often been
stressed. An implication that has been less widely
recognized is that the KS molecular orbital model is
physically well-founded and has certain advantages over
the Hartree±Fock model. It provides an excellent basis
for molecular orbital theoretical interpretation and
prediction in chemistry.
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1 Introduction

The title paper by Kohn and Sham (KS) [1] has of course
to be considered in conjunction with its predecessor, the
paper by Hohenberg and Kohn (HK) [2]. The HK paper
established for a many-particle system with some two-
particle interaction, where all particles move in a given
local potential, m(r), and with a restriction to systems
that have nondegenerate ground states, that there is
a one-to-one mapping between the potential, m(r), the
particle density, q(r), and the ground-state wavefunc-
tion, Y0,

q�r� $ m�r� $ W0 : �1�
If Y0 is a functional of the density, then so are all
properties, since any property may be determined as the
expectation value of the corresponding operator, Ô say,
O�q� � W0�q�h jÔ W0�q�j i. In particular the kinetic energy

is also a functional of the density, T[q], the electron±
electron interaction energy, W[q], and the total energy,
E[q]. HK also established the existence of the total
energy functional, Em[q], for which the ground-state
energy, E0, of the system with external potential m, is a
lower bound,

Em�q� � W�q�h T̂ � V̂ � Ŵ
�� ��W�q�i

� T �q� �
Z

qm dr � W �q� � E0 : �2�

It is easy to generalize Eqs. (1) and (2) if the ground state
is degenerate [3]. A particularly elegant de®nition of the
functional F[q] = T[q] + W[q], which automatically
covers the case of ground-state degeneracy, has been
provided in Levy's constrained search formulation [4]

FL�q� � T �q� � W �q� � min
W!q

W T̂ � Ŵ
�� ��W
 �

; �3�

where the minimum is to be searched over all possible
wavefunctions that yield the given q as the density.
There is no denying the great importance of these
theorems, but it may still be argued that the step taken in
the KS paper has been as important: it certainly has been
for chemistry. Equation (2) holds the promise of a very
e�cient route to total energies of many-electron systems,
from a Euler±Lagrange equation for the density, if good
approximations for T[q] and W[q] could be found. This
would e�ectively reduce the very high dimensional
problem of the calculation of the many-particle wave-
function, Y0, to the determination of just the simple
function in 3D real space, q(r); yet, Eq. (2) has found
very little practical application. The reason is that it is
very di�cult to develop su�ciently accurate density
functionals, in particular, for the kinetic energy. This is a
problem that already plagued the Thomas±Fermi ap-
proach, and although the HK theorems give a much
more theoretically sound basis to density functional
theory (DFT), its practical importance might not have
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risen above that of the Thomas±Fermi model if it had
not been for the KS one-electron model.

So it is the second step, made in the KS paper, that
has been essential for DFT to become the widely applied
method for electronic structure calculations that it is
today. We will comment brie¯y on the historical context
of the KS paper. Then a few remarks on practical
(computational) aspects of the KS equations will be
made and ®nally the conceptual implications of the KS
one-electron or molecular orbital (MO) model and its
importance for chemistry now and in the future will be
commented on.

2 Historical context

In the many years that have passed since the publication
of the KS paper, the way that their results are usually
presented, and where the emphasis is put, has of course
shifted. It is now customary to stress from the outset that
the KS theory introduces a system of noninteracting
electrons, moving in a local potential, ms(r). The ground-
state wavefunction of the KS system ± a single Slater
determinant of the lowest N orbitals ± will yield precisely
the same electron density as the exact interacting
electron system with potential m(r). So the KS Hamilto-
nian, Ĥs, is just a sum of one-electron Hamiltonians,
ĥs, and the wavefunction of the KS system is a simple
one-determinantal wavefunction,

Ĥs �
X

i

ĥs�i� �
X

i

ÿ 1

2
r2�i� � ms�ri�

� �
ĥs�1�/i�1� � ei/i�1�

Ws � /1�1�;/2�2�; . . . ;/N �N�j j

qs�r� �
XN

i�1

X
s

/i�r; s�j j2 � qexact�r�

�4�

The KS paper does not even mention Ys, but it
concentrates on the orbital equations and right away
specializes on systems with slowly varying density. It
uses the local density approximation (LDA) from the
outset. Considerable attention is given to corrections to
be introduced, dependent on the gradient of the density,
to take variation of the density into account. It is
historically understandable, in view of the importance at
the time (and for some 10±15 years after the publication
date) of Slater's exchange approximation [5], that
extensive comparison is made to this exchange approx-
imation, which led to a potential proportional to q(r)1/3.
It is pointed out that the variation procedure that is
inherent to the KS approach leads to an exchange
potential that is two-thirds of Slater's, a point that had
been shown earlier by GaÂ spaÂ r [6]. Slater next introduced
a constant a in his exchange potential; this could be
determined according to various criteria. There has been
considerable debate over this constant, which has now
long subsided, the KS treatment with its explicit

inclusion of a correlation functional and potential
having been generally adopted. In their paper KS also
discuss the possibility that one could use a nonlocal
exchange potential, and add only a local correlation
potential. Although they stress (in the title of the paper)
that they introduce self-consistent equations that include
correlation e�ects, it is, with hindsight, interesting to
observe that KS only mentioned in a note added in proof
that the paper has actually achieved the possible
replacement of the many-electron problem with an
exactly equivalent set of self-consistent one-electron
equations. In this note they introduce the local ex-
change±correlation potential mxc(r)=dExc[q]/dq(r) which
features in the exact ms,

ms�r� � m�r� � mCoul�r� � mxc�r� ; �5�
where mCoul=òq(r2)/r12 dr2. The exchange±correlation
energy, Exc, which is a crucial quantity in DFT, is
de®ned only within the context of the KS one-electron
model. We will comment later on Exc more extensively,
but note at this point that it is exactly this feature, of
treating the complicated many-electron system in prin-
ciple exactly with only the computational expense of
a self-consistent-®eld calculation, which has been so
appealing in KS theory. However enticing the promise of
computational simplicity and e�ciency is, the possibility
to treat correlation at the one-electron level has been
hard to accept for a quantum chemistry community that
was steeped in the belief that correlation was by
de®nition everything that could not be covered at the
one-electron level.

3 Computational considerations

The KS equation shares with Slater's Xa method the
replacement of the nonlocal exchange operator of
Hartree±Fock (HF) theory by a local potential. This
particular feature of Slater's exchange approximation
had been extensively exploited in solid-state physics, and
initially the interest in quantum chemistry almost
exclusively focussed on the e�ciency of the scattered-
wave technique borrowed from physics for solving the
Xa and LDA one-electron equations [7]. The required
mu�n-tin approximation of the potential, however,
proved to be too severe in molecules, prohibiting reliable
bond energy and structure determinations. The obvious
alternative is to use basis sets [8, 9], as was common in
quantum chemistry, and evaluate the matrix elements of
mxc by numerical integration. The approximate Diop-
hantine method was introduced by Ellis for this purpose
[10]. Although this method was su�ciently precise to
calculate bond energies and structures, it was not
capable of high numerical precision. In the mid 1980s
the problem of 3D numerical integration of molecular
integrands, with their characteristic singularities at the
nuclear sites, was solved simultaneously, in somewhat
di�erent ways, by Becke [11] and by Boerrigter et al.
[12].

Precise 3D numerical integration a�ords solution of
the KS equations with a basis-set-expansion method. It
would, however, make a KS calculation more expensive
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than a HF calculation, simply adding the burden of
numerical integration of the mxc matrix elements to the
two-electron integral evaluation still required for the
Coulomb potential matrix elements. The latter would
cause an n4 scaling of DFT calculations just as they did
for HF calculations (ignoring distance cut-o�s). KS
DFT has often inappropriately been quoted as being
relatively e�cient, and in particular as scaling better
than HF theory. As a matter of fact, the reputation
of ``local-density methods'' was initially (1970s ®rst half
of 1980s) largely based on computational e�ciency, the
often higher accuracy than HF methods, in particular
for transition-metal systems (complexes, cluster com-
pounds) being considered a nice advantage, but not a
decisive one since it was ill-understood. However, e�-
ciency compared to the standard HF calculations of the
day was achieved by the introduction of auxiliary basis
sets for the expansion of the density [8]. This density-
®tting, which has been employed in most DFT codes,
having later been adopted by Sambe and Felton [13] and
improved by Dunlap et al. [14], can also be formulated
as an insertion of a resolution of the identity and is
sometimes denoted as such (RI-J[15]). Auxiliary basis
sets can just as well be used to provide better scaling (as
n3) of the Coulomb operator matrix elements in HF
calculations. The KS equations do not, with basis-set
methods, inherently scale better than the HF equations.
The real virtue of the KS method is the possibility to
deal with e�ects of electron correlation, in particular the
calculation of the correlation energy, with the compu-
tational expense of a one-electron method, while post-
HF methods become very expensive indeed. The success
of the KS method therefore hinges on the availability of
good approximations to Exc, which have been much
improved by the introduction of the generalized gradient
approximations (GGA) [16, 17].

4 Electron correlation in a one-electron method

The great appeal of the KS scheme is, as previously
mentioned, that it o�ers the promise of correlated
energies with a one-electron method, which scales much
more favourably than traditional correlation calcula-
tions. The de®nition of the crucial quantity, the
exchange±correlation energy, Exc[q], has been somewhat
confusing for quantum chemists, who have all been
trained with the ``standard model'' where the ``best''
one-electron model is HF, the exchange energy is
de®ned within that model, and the correlation energy
is by de®nition the di�erence between the HF energy
and the exact energy. KS introduced Exc[q], which they
said is ``by our de®nition'' the exchange and correlation
energy. Until rather recently [18±20], it had almost
never been emphasized that KS's de®nition was not the
standard one. The KS de®nition is straightforward once
one puts aside the reservation that has long existed,
certainly in the quantum chemistry community, against
using the one-determinantal wavefunction of KS orbit-
als, Ys. The general feeling has been for a long time
that the KS orbitals were only mathematical constructs
that one could use to build the total density, but that

these orbitals were deprived of physical meaning. They
should therefore not be used to build a wavefunction
like Ys. It was considered to be against the spirit of
DFT anyway to go back to a wavefunction. I believe
that this conviction has considerably delayed a full
appreciation of the meaning and status of the KS
orbitals. They are much more useful and physically
meaningful than they were held to be, and they can play
a signi®cant role in interpretation and prediction in
chemistry, combining the elegance and transparency of
the qualitative MO theory with the high accuracy that
modern density functionals a�ord. We return to this
point later.

KS did not stress a point which received more at-
tention later: their basic ansatz is that for every inter-
acting electron system with a given external local
potential, m(r), there actually exists a corresponding
noninteracting system, i.e. there exists a local potential,
ms(r), such that a noninteracting system of electrons
moving in that potential will have the same density as
the interacting one. In spite of occasional assertions to
the contrary, it has not been proven that for every in-
teracting system the KS potential ms(r) exists. What has
been proven is the following. Consider an interacting
electron system with potential m(r). To this system be-
longs a ground-state density (nondegenerate case) or
a set of pure state and ensemble representable densities
in the case of degeneracy. The HK functional, F[q] =
T[q]+W[q], can be extended by Levy's constrained-
search approach [4] to a functional FL[q] (see Eq. 3) that
can be proven to have a functional derivative dFL[q]/
dq(r), with the potential m(r) as a tangent functional, at
those densities and nowhere else [21±23]. Similarly, for
noninteracting electrons the analogous constrained-
search functional, TL[q] (only the kinetic energy remains
when Ŵ � 0), can be de®ned. Again, when the non-
interacting system is characterized by a local potential
ms(r), the di�erentiability of TL[q] has been established at
its pure state or ensemble representable densities, with
ms(r) as its functional derivative. However, these results,
although sometimes quoted as such, do not constitute
the desired proof, which requires the demonstration that
the set of interacting densities is contained in the set of
noninteracting ground-state densities. It is a sobering
thought that after such a long time this proof has not
been found. In practice this has not been a drawback: a
breakdown of the KS ansatz has not been observed so
far. Nevertheless, one should not naively expect that for
every nondegenerate interacting ground-state density a
nondegenerate (one-determinantal) KS system actually
exists. It was pointed out by Levy [24] that there are
many densities (for instance, convex combinations of
densities belonging to a set of degenerate ground states)
that are not pure-state representable. Given an inter-
acting ground-state density, one therefore has to con-
sider the possibility that this density is not representable
by a pure state of a noninteracting KS system, but that it
is ensemble-representable in the noninteracting case.
Cases have been identi®ed where a nondegenerate
ground-state density of an interacting system was en-
semble-representable by degenerate KS ground-state
densities [25].
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Assuming that ms exists, and therefore the KS orbitals
can be calculated, the quantity Exc is de®ned as the re-
maining unknown part of the exact total energy, E, the
kinetic energy, the nuclear attraction energy, and the
classical electron±electron repulsion energy following
straightforwardly from the knowledge of the density and
orbitals

E � Ts�q� �
Z

m�r�dr� 1

2

ZZ
q�r�q�r0�
jrÿ r0j dr dr

0 � Exc�q� :

�6�
Exc is di�erent from the corresponding HF quantities. Its
meaning becomes very simple when we consider the
energy of the single-determinantal wavefunction of KS
orbitals, Ys,

EKS � Ws Ĥ
�� ��Ws


 �
� Ts �

Z
m�r�dr� 1

2

ZZ
q�r�q�r0�
jrÿ r0j drdr

0 � Wx ; �7�

where the exchange energy, Wx has the same form as in
the HF case but is to be evaluated with the KS orbitals.
De®ning the correlation energy, Ec in DFT as the
di�erence between the energy of the determinant with
the exact KS orbitals and the exact energy, one obtains

Ec � E ÿ EKS � Exc ÿ Wx

EHF
c � E ÿ EHF

�8�

where EHF is the traditional HF energy. So the DFT
de®nitions of exchange and correlation are natural when
one recognizes that KS introduced a one-electron model
that may be considered an alternative to the long-
established HF model, with the KS determinant taking
the place of the HF determinant. The di�erence between
the DFT and standard de®nitions of exchange and
correlation energies was only given attention a long time
after the KS paper appeared (see Ref. [26] for a review).
The KS noninteracting electron system and its determi-
nantal wavefunction have a somewhat di�erent status
than the HF model, being related to exact properties
(notably the density) of the real system. A clear
advantage of the HF model from an operational point
of view, and therefore of the related de®nition of the
correlation energy, is the possibility to obtain very
accurate HF wavefunctions, no knowledge of the exact
solution being required. Since the HF determinant
minimizes the expectation value of the Hamiltonian,
the DFT correlation energy will always be larger in an
absolute sense, i.e. more negative, than the HF-based
correlation energy,

WHF Ĥ
�� ��WHF


 � � Ws Ĥ
�� ��Ws


 �
Ec � EHF

c �9�
The reservation against the use of Ys was caused by the
suspicion that the KS orbitals might not be ``normal''
orbitals, and should not be used in the same way as HF
or extended HuÈ ckel orbitals for qualitative rationaliza-
tion of experimental trends. On the other hand, the

orbitals of Xa (i.e. exchange-only LDA) or LDA and
later GGA calculations have always been used as such.
It has been argued [20, 26, 27] that this is actually
perfectly in order. It has emerged from detailed com-
parisons between HF and KS orbitals, and between
components of the energy (kinetic energy, electron±
nuclear attraction, classical electron±electron repulsion,
exchange energy) in the two models, that the KS orbitals
and determinantal wavefunction are not very di�erent
from their HF counterparts, and to the extent that they
are, one might argue that they have some advantages.
This may best be understood from an analysis of the KS
potential ms(r), which may be written as the sum of a
number of physically meaningful terms,

ms�r� � m�r� � mCoul�r� � mholex �r�r � mholec �r�
� mc;kin�r� � mresp�r� : �10�

The leading terms in ms are the attractive nuclear ®eld,
m(r), and the repulsive Coulomb potential of the
electronic charge density, mCoul(r). The next important
term is the exchange hole potential. It is local and
therefore di�erent from the HF exchange operator, but
it also represents an exchange hole comprising one
electronic charge, and taken together the ®rst three terms
make the KS potential rather similar to the HF
operator. These terms determine the rough features of
the spectrum of orbital energies and the shape of the
MOs. KS orbitals are therefore most of the time very
similar to HF orbitals. The di�erence is in the last three
terms of ms. In particular, it is interesting to note that the
potential of the Coulomb hole, mholec , is present in ms. It
has been stressed [26, 27] that in situations of strong left±
right correlation, such as in dissociating bonds, this
potential makes an important di�erence. While in that
case the HF orbitals and the electron density become
much too di�use, the Coulomb hole potential causes the
KS orbitals not to su�er from this de®ciency. As a
consequence, the correlation error in individual energy
terms such as the kinetic energy or the electron±nuclear
energy, is much smaller in the KS case. This illustrates in
what sense and with what e�ect electron correlation is
embodied in the one-electron KS model. It is interesting
to observe that the incorporation of the potential of both
the exchange and correlation holes, i.e. neglecting mc,kin
and mresp in Eq. (10), gives precisely the potential
advocated by Slater for use in one-electron equations
just 2 years after his introduction of the exchange
approximation [28]. Slater conjectured that this poten-
tial, based on the conditional probability to ®nd other
electrons around a given position of the reference
electron, might give optimal orbitals for a con®guration
interaction. Speculating that the Xa potential might
actually incorporate part of the correlation e�ects led
Slater to denote the Xa potential as an exchange±
correlation potential (this has been corroborated by the
®nding that the current exchange approximations of
DFT, which are still predominantly the Slater exchange,
actually incorporate the nondynamical correlation ef-
fects in chemical bonds [27]). LoÈ wdin [29] was inspired
by Slater's proposal to investigate the equations for
optimal orbitals in a con®guration interaction. These
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natural orbitals obey an equation in which the physics of
the exchange±correlation hole potential, mholexc (sometimes
referred to as the Slater±LoÈ wdin potential), can indeed
be recognized; however, the application of only mholexc in
one-electron equations leads to too contracted orbitals
and density, and the remaining potentials, mc;kin and mresp

in the KS potential play an important role to build
precisely the right shape of the total density. It is
possible to relate special features in the potentials mc;kin
(peak behaviour around the bond midpoint) and mresp

(repulsive steps in atomic shells) to speci®c electron
correlation e�ects [26].

It is worth noting that not just the occupied KS or-
bitals but also the virtual KS orbitals and orbital ener-
gies can be used for qualitative interpretation. They
surely are not devoid of physical meaning, but they are
directly related to excitation energies and to the elec-
tronic nature of excited states. This has become evident
very recently from the development of time-dependent
DFT methods for response properties, in particular
excitation energies [30±32]. (see also the results in Ref.
[33]).

The properties of the KS orbitals recommend them
strongly for use in the qualitative MO theories of
chemistry. It would be hard to ®nd a better MO theo-
retical context in which to apply concepts such as
``charge control'' and ``orbital control'' than the KS one-
electron model. In view of the good quality of several
energy components (those directly following from the
electron density are in fact exact) the KS one-electron
model can be used reliably for interpretation using
analysis along the lines delineated by Morokuma [34]
within the HF model. Energy contributions such as
classical electrostatic interaction, Pauli repulsion, and
donor±acceptor interaction (orbital interaction energy)
can be calculated and used for interpretation in the KS
model [35±38]. We refer to Ref. [39] for a recent review
with more complete discussion and examples. It is
thought provoking that KS MO theory is actually re-
lated to exact energetics by way of the exchange±corre-
lation functional, Exc. The implication is that the
concepts mentioned above, that traditionally were used
only qualitatively since they were de®ned in a one-elec-
tron model (HF) that did not yield the exact energy, can
now be used with accurate energies. Within the KS
model, the MO-type analysis constitutes a complete
conceptual framework. Since qualitative understanding
and interpretation is the primary objective of this type of
analysis, this may in practice not be such a huge ad-
vantage over MO theory based on semiempirical meth-
ods as it may seem at ®rst sight, but it doubtless
recommends the KS one-electron model as the preferred
basis for MO theory.

We conclude that the 1965 paper by KS has had a
singular in¯uence in the electronic structure theory of
physics in the last part of the century. Its impact in
chemistry has enormously increased in the last decade.
Its implications are only gradually being understood and
its full depth may not yet have been fathomed. There can

be no doubt that it will exert a large in¯uence well into
the next century.
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